5 research outputs found

    Simulation of Postsynaptic Glutamate Receptors Reveals Critical Features of Glutamatergic Transmission

    Get PDF
    Activation of several subtypes of glutamate receptors contributes to changes in postsynaptic calcium concentration at hippocampal synapses, resulting in various types of changes in synaptic strength. Thus, while activation of NMDA receptors has been shown to be critical for long-term potentiation (LTP) and long term depression (LTD) of synaptic transmission, activation of metabotropic glutamate receptors (mGluRs) has been linked to either LTP or LTD. While it is generally admitted that dynamic changes in postsynaptic calcium concentration represent the critical elements to determine the direction and amplitude of the changes in synaptic strength, it has been difficult to quantitatively estimate the relative contribution of the different types of glutamate receptors to these changes under different experimental conditions. Here we present a detailed model of a postsynaptic glutamatergic synapse that incorporates ionotropic and mGluR type I receptors, and we use this model to determine the role of the different receptors to the dynamics of postsynaptic calcium with different patterns of presynaptic activation. Our modeling framework includes glutamate vesicular release and diffusion in the cleft and a glutamate transporter that modulates extracellular glutamate concentration. Our results indicate that the contribution of mGluRs to changes in postsynaptic calcium concentration is minimal under basal stimulation conditions and becomes apparent only at high frequency of stimulation. Furthermore, the location of mGluRs in the postsynaptic membrane is also a critical factor, as activation of distant receptors contributes significantly less to calcium dynamics than more centrally located ones. These results confirm the important role of glutamate transporters and of the localization of mGluRs in postsynaptic sites in their signaling properties, and further strengthen the notion that mGluR activation significantly contributes to postsynaptic calcium dynamics only following high-frequency stimulation. They also provide a new tool to analyze the interactions between metabotropic and ionotropic glutamate receptors

    Study of neuronal activity : optimization of simulation time and stability of models

    No full text
    Les neurosciences computationnelles consistent en l’étude du système nerveux par la modélisation et la simulation. Plus le modèle sera proche de la réalité et plus les ressources calculatoires exigées seront importantes. La question de la complexité et de la précision est un problème bien connu dans la simulation. Les travaux de recherche menés dans le cadre de cette thèse visent à améliorer la simulation de modèles mathématiques représentant le comportement physique et chimique de récepteurs synaptiques. Les modèles sont décrits par des équations différentielles ordinaires (EDO), et leur résolution passe par des méthodes numériques. Dans le but d’optimiser la simulation, j’ai implémenté différentes méthodes de résolution numérique des EDO. Afin de faciliter la sélection du meilleur algorithme de résolution numérique, une méthode nécessitant un minimum d’information a été proposée. Cette méthode permet de choisir l’algorithme qui optimise la simulation. La méthode a permis de démontrer que la dynamique d’un modèle de récepteur synaptique influence plus les performances des algorithmes de résolution que la structure cinétique du modèle lui-même. De plus, afin de caractériser des comportements pathogènes, une phase d’optimisation est réalisée. Cependant, certaines valeurs de paramètres rendent le modèle instable. Une étude de stabilité a permis de déterminer la stabilité du modèle pour des paramètres fournis par la littérature, mais également de remonter à des contraintes de stabilité sur les paramètres. Le respect de ces contraintes permet de garantir la stabilité des modèles étudiés, et donc de garantir le succès de la procédure permettant de rendre un modèle pathogène.Computational Neuroscience consists in studying the nervous system through modeling and simulation. It is to characterize the laws of biology by using mathematical models integrating all known experimental data. From a practical point of view, the more realistic the model, the largest the required computational resources. The issue of complexity and accuracy is a well known problem in the modeling and identification of models. The research conducted in this thesis aims at improving the simulation of mathematical models representing the physical and chemical behavior of synaptic receptors. Models of synaptic receptors are described by ordinary differential equations (ODE), and are resolved with numerical procedures. In order to optimize the performance of the simulations, I have implemented various ODE numerical resolution methods. To facilitate the selection of the best solver, a method, requiring a minimum amount of information, has been proposed. This method allows choosing the best solver in order to optimize the simulation. The method demonstrates that the dynamic of a model has greater influence on the solver performances than the kinetic scheme of the model. In addition, to characterize pathogenic behavior, a parameter optimization is performed. However, some parameter values lead to unstable models. A stability study allowed for determining the stability of the models with parameters provided by the literature, but also to trace the stability constraints depending to these parameters. Compliance with these constraints ensures the stability of the models studied during the optimization phase, and therefore the success of the procedure to study pathogen models

    Etude de l'activité neuronale : optimisation du temps de simulation et stabilité des modèles

    No full text
    Computational Neuroscience consists in studying the nervous system through modeling and simulation. It is to characterize the laws of biology by using mathematical models integrating all known experimental data. From a practical point of view, the more realistic the model, the largest the required computational resources. The issue of complexity and accuracy is a well known problem in the modeling and identification of models. The research conducted in this thesis aims at improving the simulation of mathematical models representing the physical and chemical behavior of synaptic receptors. Models of synaptic receptors are described by ordinary differential equations (ODE), and are resolved with numerical procedures. In order to optimize the performance of the simulations, I have implemented various ODE numerical resolution methods. To facilitate the selection of the best solver, a method, requiring a minimum amount of information, has been proposed. This method allows choosing the best solver in order to optimize the simulation. The method demonstrates that the dynamic of a model has greater influence on the solver performances than the kinetic scheme of the model. In addition, to characterize pathogenic behavior, a parameter optimization is performed. However, some parameter values lead to unstable models. A stability study allowed for determining the stability of the models with parameters provided by the literature, but also to trace the stability constraints depending to these parameters. Compliance with these constraints ensures the stability of the models studied during the optimization phase, and therefore the success of the procedure to study pathogen models.Les neurosciences computationnelles consistent en l’étude du système nerveux par la modélisation et la simulation. Plus le modèle sera proche de la réalité et plus les ressources calculatoires exigées seront importantes. La question de la complexité et de la précision est un problème bien connu dans la simulation. Les travaux de recherche menés dans le cadre de cette thèse visent à améliorer la simulation de modèles mathématiques représentant le comportement physique et chimique de récepteurs synaptiques. Les modèles sont décrits par des équations différentielles ordinaires (EDO), et leur résolution passe par des méthodes numériques. Dans le but d’optimiser la simulation, j’ai implémenté différentes méthodes de résolution numérique des EDO. Afin de faciliter la sélection du meilleur algorithme de résolution numérique, une méthode nécessitant un minimum d’information a été proposée. Cette méthode permet de choisir l’algorithme qui optimise la simulation. La méthode a permis de démontrer que la dynamique d’un modèle de récepteur synaptique influence plus les performances des algorithmes de résolution que la structure cinétique du modèle lui-même. De plus, afin de caractériser des comportements pathogènes, une phase d’optimisation est réalisée. Cependant, certaines valeurs de paramètres rendent le modèle instable. Une étude de stabilité a permis de déterminer la stabilité du modèle pour des paramètres fournis par la littérature, mais également de remonter à des contraintes de stabilité sur les paramètres. Le respect de ces contraintes permet de garantir la stabilité des modèles étudiés, et donc de garantir le succès de la procédure permettant de rendre un modèle pathogène

    High resolution reflection tomographic diffractive microscopy

    No full text
    International audienceWe have developped a tomographic diffractive microscope in reflection, using a high numerical aperture objec- tive and equipped with a fluorescence confocal scanner. We describe the set-up and first images of a microscopic USAF target, obtained in holographic, diffractive tomographic, and confocal mode, and which reveal the higher resolution capabilities of this instrument. We also compare images obtained in transmission and in reflection, emphasizing the better optical sectionning capabilities of reflection diffractive tomographic microscopy
    corecore